Maschinelles Lernen 1 - Grundverfahren

Inhalt

Das Themenfeld Wissensakquisition und Maschinelles Lernen ist ein stark expandierendes Wissensgebiet und Gegenstand zahlreicher Forschungs- und Entwicklungsvorhaben. Der Wissenserwerb kann dabei auf unterschiedliche Weise erfolgen. So kann ein System Nutzen aus bereits gemachten Erfahrungen ziehen, es kann trainiert werden, oder es zieht Schlüsse aus umfangreichem Hintergrundwissen.

Die Vorlesung behandelt sowohl symbolische Lernverfahren, wie induktives Lernen (Lernen aus Beispielen, Lernen durch Beobachtung), deduktives Lernen (Erklärungsbasiertes Lernen) und Lernen aus Analogien, als auch subsymbolische Techniken wie Neuronale Netze, Support Vektor-Maschinen und Genetische Algorithmen. Die Vorlesung führt in die Grundprinzipien sowie Grundstrukturen lernender Systeme ein und untersucht die bisher entwickelten Algorithmen. Der Aufbau sowie die Arbeitsweise lernender Systeme wird an einigen Beispielen, insbesondere aus den Gebieten Robotik und Bildverarbeitung, vorgestellt und erläutert.

Lernziele:

  • Studierende erlangen Kenntnis der grundlegenden Methoden im Bereich des Maschinellen Lernens.
  • Studierende können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten.
  • Die Studierenden können ihr Wissen für die Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinellen Lernens einsetzen.
VortragsspracheDeutsch
Literaturhinweise

Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

  • Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
  • Machine Learning - Tom Mitchell
  • Pattern Recognition and Machine Learning - Christopher M. Bishop
  • Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
  • Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.