Computational Intelligence

  • type: Lecture (V)
  • chair: KIT-Fakultäten - KIT-Fakultät für Maschinenbau - Institut für Automation und angewandte Informatik
    KIT-Fakultäten - KIT-Fakultät für Maschinenbau
  • semester: WS 21/22
  • time: 2021-10-20
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)


    2021-10-27
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-11-03
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-11-10
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-11-17
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-11-24
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-12-08
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-12-15
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2021-12-22
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2022-01-12
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2022-01-19
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2022-01-26
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2022-02-02
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)

    2022-02-09
    14:00 - 15:30 weekly
    30.22 Gaede-Hörsaal
    30.22 Physik-Flachbau (OG 1)


  • lecturer: apl. Prof. Dr. Ralf Mikut
    apl. Prof. Dr. Markus Reischl
    Dr. Ines Reinartz
  • sws: 2
  • lv-no.: 2105016
  • information: Blended (On-Site/Online)
Content

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

  • Terms and definitions Computational Intelligence, application fields and examples
  • Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
  • Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
  • Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
  • deep learning

Learning objectives:

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Language of instructionGerman
Bibliography

Kiendl, H.: Fuzzy Control. Methodenorientiert. Oldenbourg-Verlag, München, 1997

S. Haykin: Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999

Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013

Blume, C, Jakob, W: GLEAM - General Learning Evolutionary Algorithm and Method: ein Evolutionärer Algorithmus und seine Anwendungen. KIT Scientific Publishing, 2009 (PDF frei im Internet)

H.-P. Schwefel: Evolution and Optimum Seeking. New York: John Wiley, 1995

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)